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Part 1 Outline 
•  Betti numbers of spheres centered on point patterns, as a 

refinement of results for the Euler characteristic from  Stochastic 
and Integral Geometry  
–  eg texts by Stoyan, Kendall, Mecke. Schneider and Weil. 

•  Alpha shapes and the incremental Betti number algorithm  
–  Delfinado and Edelsbrunner, 1993. 

•  The distribution of Poisson Delaunay Cell shapes 
–  (Miles, 1974. Muche, 1996, 1998.  Also the Okabe Boots Sugihara 

Chiu book) 

•  Asymptotic expressions for the Betti numbers of Poisson points 
in the low intensity limit 
–  (Quintanilla and Torquato, 1996.  VR 2006) 

 



Tools for studying structure in point patterns  
•  Look at how something varies with distance 
•  something might be: 

–  Number of points in shell of radius r (two pt correlation fn) 
–  Minkowski functionals  
     (volume, surface area, mean curvature, Euler characteristic) 
–  Connected components (continuum percolation) 
–  Betti numbers (higher-order topological measures) 

 

In 3D: β0 is number of components 
            β1 is number of independent,  
                   non-contractible loops 
            β2 is number of enclosed voids 



Voronoi diagram 



Delaunay triangulation 



Union of balls, radius α 



Alpha complex 





Alpha Shapes 
Given a simplex, σ, in the Delaunay triangulation its  
alpha threshold, αΤ(σ),  is the radius of the smallest sphere that touches the 
vertices of σ and contains no other data points.  

The alpha threshold of a lower dimensional face is not always 
the same as the circumradius of that face. 

The alpha complex (or alpha shape) is the union of all σ from the 
Delaunay triangulation with αΤ(σ) <= α.   

acute triangles non-acute triangles 
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Incremental algorithm for BNs   

•  Add simplices one at a time.   
•  A k-simplex σ is positive if it creates a k-cycle;  

negative if it destroys a (k-1)-cycle.  

•  βk(α) = #{+ve k-simplices with αΤ<=α } 
                 - #{-ve (k+1)-simplices with αΤ<=α }  

•  Algorithm due to Delfinado and Edelsbrunner 
(1993/5).  

•  Fast to compute in dimensions 2 and 3.  



Homog. Poisson point patterns 

•  Computational model:  
–  Constant intensity λ  
–  N points in unit square with uniform distribution in 

each coordinate 
–  For large λ,  N is approximately Gaussian distributed.  
–  Attach balls of radius α to each point. 
–  Compute βk(α) using periodic boundary conditions.   
–  Eβk(α)  estimated as mean values of many 

independent realizations in unit d-cube.   



radius α 

Ε β0 / λ

Ε β1 / λ

2D Asymptotic results: 

β0 / λ = 1-2η+1.5641η2 

β1 / λ = 0.0640η2 

η is πα2λ 
1 / λ



radius α 

β0 

β1 

β2 

3D Asymptotic results: 

β0 / λ = 1-4η+5η2 -2.7431η3 

β1 / λ = 0.5747η2 

η is (4/3)πα3λ 

β2 / λ = 0.015η3 

grey lines mark the direct and  
void percolation thresholds 
 
Conjecture of Klaus Mecke that  
the zeros of the Euler function bound 
the percolation thresholds.  
See Naher et al J Stat Mech 2008 



Derivation of results 

•  Results for β0 are due to Quintanilla and 
Torquato, 1996.  

•  For  β1  we use the following result due to Miles 
(1974)   

•  Size and shape of a Poisson Delaunay cell is 
completely characterised by the p.d.f. 

 
•  Ergodicity of the Poisson-Delaunay complex 

implies  
 E #{σ in R such that σ is A} = λk ||R|| Pr(A) 
 



Empty triangles in 2D 

•  Simplest hole in 2D alpha shape is formed by 
edges of a single triangle 

Property A is:  

• All edges < 2α

• Triang. circumradius > α 

• Acute triangle  

Eβ1(α) >= 2λ Pr(A) ~ 0.0640 λ η2 



Higher order terms 

…Need joint distributions of two or more PDC triangles.    
 
Or some clever tricks analogous to Torquato’s expressions for 
the number of clusters containing k spheres 
   



Empty triangles and tetrahedra 

•  Similar argument as in 2D case.  

Triangle conditions now  
apply to a typical face of a PDC 

Face circumradii < a 
Tetrahedron circumradius > a 
Circumcenter interior to tetrahedron.  

Eβ1(α) ~ λ2 Pr(A) ~ 0.5747 λ η2 

Eβ2(α) ~ λ3 Pr(A) ~ 0.015 λ η3 



Persistent homology 
Xa maps inside Xb  
So there is a linear map  
π: Hk(Xa)        Hk(Xb) 
 
define Hk(a,b) to be  
π(Hk(Xa))       Hk(Xb) 
 
Hk(a,b) encodes cycles 
in Xa equivalent wrt 
boundaries in Xb 
 
 

image from Ghrist. Barcodes: the persistent topology of data. Bulletin AMS 2008 

Xa 

Xb 

U
 

Persistent homology is defined for a  
growing sequence of cell complexes 

Robins (1999) “Towards computing homology from finite approximations” 
Edelsbrunner, Letscher, Zomorodian (2000) “Topological persistence and simplification” 
Zomorodian, Carlsson (2005) “Computing persistent homology” 



Persistent homology 
•  Input:  A filtration:  
•  i.e. an ordering of the cells in the complex.  

•  cells are added sequentially (never removed).  
•  each k-cell either creates a k-cycle or destroys a (k-1)-cycle. 
•  a destroyer is paired with the youngest cycle that is 

homologous to its boundary.  

•  Output: (birth, death) pairs that define the parameter interval 
over which each k-cycle exists.  

image from Zomorodian (2009) Computational Topology 

K0 ⇢ K1 ⇢ K2 ⇢ · · · ⇢ Kn



Persistence diagrams 
persistence diagram persistence barcode 

de
at

h 

birth 

image from Ghrist. Barcodes: the persistent topology of data. Bulletin AMS 2008 

Key result:  Persistence diagrams are stable wrt to perturbations in the original data  
[Cohen-Steiner, Edelsbrunner, Harer (2007) “Stability of persistence diagrams”] 

PD1 
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As
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Fig. 1. (Left) Volume rendering of ∼ 150; 000 sphere-pack in a cylindrical container. (Right) Same image
with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.

spherical bead packing 

Disordered packing   
(random close pack, maximally jammed) 
Bernal limit has vol frac Φ = 64% 
Well-defined distribution of local volumes 

Partially crystallized packing, Φ=70% 
a fully crystallized packing has Φ=74% 
Kepler’s conjecture (1600s) has only been 
proven this century by Hales and Ferguson 



spherical bead packing 
Data analysis:   

1.  calculate bead centres and radii from the XCT image 
2.  build the Delaunay complex from the bead centres  
3.  construct the alpha-shape filtration 
4.  compute persistence diagrams  

2-4 use CGAL and dionysus software packages.  



A maximally dense packing is built from layers of hexagonally packed spheres  
Locally, these give pores related to regular tetrahedra and octahedra 

A 

B 

C 
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Fig. 2.2. (a) – a regular tetrahedron; (b) – a regular quartoctahedron (one edge √2 times loner 
then other ones); (c) – a flat simplex with a shape of a square; (d) – a perfect octahedron. The 
octahedron is divided by infinitesimal perturbations on four quartoctahedra or four quartocta-
hedra and one flat simplex [Vol89].  

regular square “simplex” has two opposite edges that are √2 times longer than the 
other four edges. Similarly to (2) we can write: 

 

 

 

 

 

Thus, a degenerate (square) simplex has K = 0, and at small distortions the value K 
is also small. In order to compute this measure, the edges m and n are selected as a 
pair of the longest opposite edges of a simplex. Note these “virtual” simplexes can be 
important for the analysis of clusters of the Delaunay simplexes, for example for 
studying crystalline nuclei. In this case connectivity of the simplexes is taken into 
account.  Neglecting these simplexes can result in a loss of integrity of slightly dis-
torted octahedral configurations. 

Following the idea of the formula (3), one can define measures to select simplexes 
of other specific shapes. The Delaunay simplex of the body centered cubic lattice 
(BCC) is one of the important simplexes for dense packings.  In this simplex, the two 
opposite edges of the simplex are 2/√3 times longer then the others. 

The proposed measures should be calibrated before their application. A calibration 
of these measures has been done in [Med87, Naber91, Anik_Jap], utilizing models of 
a known structure (slightly distorted FCC crystal). It was proposed to use the value of 
Tb = 0.018 as a boundary to select the class of tetrahedra (simplexes closer to the 
regular tetrahedron),  and  Qb = 0.014 to select the class of quartoctahedra (simplexes 
closer to the regular qurtoctahedron) [Anik_Jap]. These boundary values seem 
reasonable in application to packings of hard spheres as well [Anik2006]. Indeed, the 
value Tb corresponds to a minimum on the T-distribution for crystalline packings of 
 

K = (∑(ei – ej )
2 + ∑(ei – em /√2)2 + ∑ (ei – en  /√2)2 + (em – en)

2 )/15<e>2       (3) 

i < j 
i,j ≠ 

i ≠ m,n i ≠m,n 
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spherical bead packing 
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  (1.41 r, 1.41 r) 

 
tetra (1.15 r, 1.22 r)   
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Fig. 1. (Left) Volume rendering of ∼ 150; 000 sphere-pack in a cylindrical container. (Right) Same image
with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.

packing fraction 
0.59 
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with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.

packing fraction 
0.63 
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As
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packing fraction 
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Saadatfar, Takeuchi, Robins, Francois, Hiraoka (2016)  
in review. 
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Persistence diagrams for a subset (14mm^3) of the  
partially crystallised packing with high volume fraction = 72%.  
 
axis units normalised by bead radius = 0.5mm 
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As

062202-2

equilateral  
triangle 

regular  
octahedron 

regular  
tetrahedron 

18 A.V. Anikeenko, M.L. Gavrilova, and N.N. Medvedev 

 

Fig. 2.2. (a) – a regular tetrahedron; (b) – a regular quartoctahedron (one edge √2 times loner 
then other ones); (c) – a flat simplex with a shape of a square; (d) – a perfect octahedron. The 
octahedron is divided by infinitesimal perturbations on four quartoctahedra or four quartocta-
hedra and one flat simplex [Vol89].  

regular square “simplex” has two opposite edges that are √2 times longer than the 
other four edges. Similarly to (2) we can write: 

 

 

 

 

 

Thus, a degenerate (square) simplex has K = 0, and at small distortions the value K 
is also small. In order to compute this measure, the edges m and n are selected as a 
pair of the longest opposite edges of a simplex. Note these “virtual” simplexes can be 
important for the analysis of clusters of the Delaunay simplexes, for example for 
studying crystalline nuclei. In this case connectivity of the simplexes is taken into 
account.  Neglecting these simplexes can result in a loss of integrity of slightly dis-
torted octahedral configurations. 

Following the idea of the formula (3), one can define measures to select simplexes 
of other specific shapes. The Delaunay simplex of the body centered cubic lattice 
(BCC) is one of the important simplexes for dense packings.  In this simplex, the two 
opposite edges of the simplex are 2/√3 times longer then the others. 

The proposed measures should be calibrated before their application. A calibration 
of these measures has been done in [Med87, Naber91, Anik_Jap], utilizing models of 
a known structure (slightly distorted FCC crystal). It was proposed to use the value of 
Tb = 0.018 as a boundary to select the class of tetrahedra (simplexes closer to the 
regular tetrahedron),  and  Qb = 0.014 to select the class of quartoctahedra (simplexes 
closer to the regular qurtoctahedron) [Anik_Jap]. These boundary values seem 
reasonable in application to packings of hard spheres as well [Anik2006]. Indeed, the 
value Tb corresponds to a minimum on the T-distribution for crystalline packings of 
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spherical bead packing 

PD1 PD2 

Persistence diagrams for a subset (14mm^3) of the random close  
packing with volume fraction = 63%.  
 
the plots are 2D histograms where colour is log10 of the  
number of (b,d) points in a small box  
 
axis units normalised by bead radius = 0.5mm 
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Fig. 1. (Left) Volume rendering of ∼ 150; 000 sphere-pack in a cylindrical container. (Right) Same image
with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.

semi-regular 
tetrahedra 

multi-tetrahedral pores 
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triangles with  
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regular tet and oct pores 

Notice the second  
transition at 67-68% 

functional PCA of persistence  
diagrams from 36 subsets shows 
97% of variation in their PD2  
is explained by a single dimension 
VR, Turner (2016) Physica D.  
   



granular and porous materials 

Ottawa sand Clashach sandstone 

1mm scale bars 

Mt Gambier limestone 

Want accurate geometric and topological characterisation from x-ray micro-CT images 
•  pore and grain size distributions, structure of immiscible fluid distributions 
•  adjacencies between elements, network models    

Understand how these quantities correlate with physical properties such as 
•  diffusion, permeability, mechanical response.    

images obtained at the ANU micro CT facility 



Topological image analysis  

•  Segment XCT image into grain (white) and pore (black) regions.  
•  Compute the signed Euclidean distance transform: 

–  SEDT(x) = - dist(x, B)  if x is in W 
–  SEDT(x) = dist(x,W) if x is in B 



Topology from images 
What is the filtration for persistence?  
 
Imagine grey levels are heights in a landscape, study the lower level sets: f(x) ≤ h.  

The topology can only change when h passes through a critical value. 
 
This observation goes back to JC Maxwell and was developed by Morse, Smale, and  
others in the 20th Century into a powerful tool for the topological analysis of manifolds.   

white is low 

black is low 



The Morse chain complex 

Mi is the set of index-i critical points.  
 
Gradient flow lines determine 
adjacencies and the boundary 
operator,    d: Mi to Mi-1  
 
This (abstract) chain complex has the 
same homology as the simplicial 
homology of the domain.   
 
The filtration orders the critical points 
by their grey-value  
 
Persistent homology pairs an index-i 
critical point that creates a cycle with 
the index-(i+1) critical point that fills in 
that cycle.  

min: 0-cell  
saddle: 1-cell  
max: 2-cell  

+ 
- 

+ 

- 

PD0  (b,d) = (1.1,1.5) 
PD1  (b,d) = (3.6, 4.5) 



Sandstones (pore space) 

Robins, Saadatfar, Delgado-Friedrichs, Sheppard (2016) Water Resources Research 52 



PD0 births measure pore size as radius of max inscribed sphere. 
 
PD0 deaths give the pore-pore throat radius (1-saddles in dist func). 
 
Number of PD1 pairs with b<0, d>0 is the genus of the pore space.   
 
PD1 pairs with birth and death the same sign signal highly non-convex  
pores or grains.   
 
Symmetry in PD1  and PD0-PD2 duality signals a balance between  
pore and grain phases 
 
PD2 measures geometry of grains:  death values are radii of  
maximally inscribed spheres. 
 
Appearance of the critical percolating sphere radius as an  
important length scale in PDs. 
 

Some observations… 



Percolation and persistence 

distances between  
locations of birth, death   
critical points  vs. 
death value 



Percolation and persistence 

dist( x(birth) – x(death) )  
vs birth.  



Percolation and persistence 
dist( x(birth) – x(death) )  
vs death  

dist( x(birth) – x(death) )  
vs birth.  
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