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Betti numbers of spheres centered on point patterns, as a
refinement of results for the Euler characteristic from Stochastic
and Integral Geometry

— eg texts by Stoyan, Kendall, Mecke. Schneider and Weil.

Alpha shapes and the incremental Betti number algorithm
— Delfinado and Edelsbrunner, 1993.

The distribution of Poisson Delaunay Cell shapes

— (Miles, 1974. Muche, 1996, 1998. Also the Okabe Boots Sugihara
Chiu book)

Asymptotic expressions for the Betti numbers of Poisson points
In the low intensity limit
— (Quintanilla and Torquato, 1996. VR 2006)
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Tools for studying structure in point patterns

* Look at how something varies with distance

« something might be:
— Number of points in shell of radius r (two pt correlation fn)
— Minkowski functionals
(volume, surface area, mean curvature, Euler characteristic)
— Connected components (continuum percolation)
— Betti numbers (higher-order topological measures)

In 3D: B, iIs number of components
B4 is number of independent,
non-contractible loops
B, is number of enclosed voids



oronoi diagram




Delaunay triangulation




Union of balls, radius o / \




Alpha complex
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Given a simplex, o, in the Delaunay triangulation its
alpha threshold, a(o), is the radius of the smallest sphere that touches the
vertices of o and contains no other data points.

acute triangles non-acute triangles

Pt

The alpha threshold of a lower dimensional face is not always
the same as the circumradius of that face.

The alpha complex (or alpha shape) is the union of all o from the
Delaunay triangulation with o (o) <= a.
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« Add simplices one at a time.

* A k-simplex o is positive if it creates a k-cycle;
negative if it destroys a (k-1)-cycle.

* B, (a) = #{+ve k-simplices with o <=a }
- #{-ve (k+1)-simplices with a<=a }

 Algorithm due to Delfinado and Edelsbrunner
(1993/5).

« Fast to compute in dimensions 2 and 3.
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— Constant intensity A

— N points in unit square with uniform distribution in
each coordinate

— For large A, N is approximately Gaussian distributed.
— Attach balls of radius a to each point.
— Compute B,(a) using periodic boundary conditions.

— EpB,(a) estimated as mean values of many
Independent realizations in unit d-cube.
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3D Asymptotic results:

Bo/ A =1-4n+512-2.743113
B/ A\ =0.5747n?

B,/ =0.015n3

N is (4/3)ma’A

grey lines mark the direct and
void percolation thresholds

Conjecture of Klaus Mecke that

the zeros of the Euler function bound
the percolation thresholds.

See Naher et al J Stat Mech 2008
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 Results for $, are due to Quintanilla and
Torquato, 1996.

* For B, we use the following result due to Miles
(1974)

« Size and shape of a Poisson Delaunay cell is
completely characterised by the p.d.f.

h,(r,ag,...,0,)= a()\,m)Amr’"z‘1 exp(— Aw,, ™).
« Ergodicity of the Poisson-Delaunay complex

Implies
E #{o in R such that o is A} = A, ||R|| Pr(A)
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« Simplest hole in 2D alpha shape is formed by
edges of a single triangle

Property Ais:
All edges < 2a,
*Triang. circumradius > o

*Acute triangle

w2 (alsin ¢
Py= f f 2(TN2Pe™ franB)drd e

7r/3

EB.(c) >= 2h Pr(A) ~ 0.0640 A 12
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...Need joint distributions of two or more PDC triangles.

Or some clever tricks analogous to Torquato’s expressions for
the number of clusters containing k spheres



Australian

< N Empty triangles and tetrahedra

« Similar argument as in 2D case.

Triangle conditions now
apply to a typical face of a PDC

EB.(ct) ~ A, Pr(A) ~ 0.5747 1?2

o Face circumradii < a
Tetrahedron circumradius > a
» Circumcenter interior to tetrahedron.

EB,(ct) ~ A, Pr(A) ~ 0.015 A n?
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Persistent homology

X, maps inside X,
So there is a linear map
7. H (X,) — Hi(Xp)

define H,(a,b) to be
t(H(X,)) © H(Xyp)

H,(a,b) encodes cycles
in X, equivalent wrt
boundaries in X,

Persistent homology is defined for a
growing sequence of cell complexes

Robins (1999) “Towards computing homology from finite approximations”
Edelsbrunner, Letscher, Zomorodian (2000) “Topological persistence and simplification”
Zomorodian, Carlsson (2005) “Computing persistent homology”
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Input: A filtration: Ko C K1 C Ko C --- C K,
I.e. an ordering of the cells in the complex.

a, b aq b ag_ a, b a b a b
O | .o 1 | ~I N N
5 d - b
d e d c d c d c d c
01| ab 1 || p2 a, 2 ||cd, ab 3 ac 4 || acd 5 || abc

cells are added sequentially (never removed).
each k-cell either creates a k-cycle or destroys a (k-7)-cycle.

a destroyer is paired with the youngest cycle that is
homologous to its boundary.

Output: (birth, death) pairs that define the parameter interval
over which each k-cycle exists.
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persistence diagram

death

birth

Key result: Persistence diagrams are stable wrt to perturbations in the original data
[Cohen-Steiner, Edelsbrunner, Harer (2007) “Stability of persistence diagrams”]
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Disordered packing

(random close pack, maximally jammed)
Bernal limit has vol frac ® = 64%
Well-defined distribution of local volumes

Partially crystallized packing, ®=70%
a fully crystallized packing has ®=74%
Kepler’s conjecture (1600s) has only been
proven this century by Hales and Ferguson
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Data analysis:
1. calculate bead centres and radii from the XCT image
2. build the Delaunay complex from the bead centres
3. construct the alpha-shape filtration
4. compute persistence diagrams

2-4 use CGAL and dionysus software packages.
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spherical bead packing

A maximally dense packing is built from layers of hexagonally packed spheres
Locally, these give pores related to regular tetrahedra and octahedra

&
§

PD2

/\
A

octa (1.15r,1.417r)
(1.41r,1.41r)

tetra (1.15r, 1.227r)

>
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packing fraction
0.59
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packing fraction
0.63




= spherical bead packing

i packing fraction
0.70

PD2
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Saadatfar, Takeuchi, Robins, Francois, Hiraoka (2016)
in review.

tetrahedra
distortion
D4
y 4
D3
y
D
octahedra
distortion
D1
y 4
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Persistence diagrams for a subset (14mm”3) of the
partially crystallised packing with high volume fraction = 72%.

axis units normalised by bead radius = 0.5mm

4103

10*




1.8}

1.6

=
IS

death radius

1.2}

1.0}

Persistence diagrams for a subset (14mm*3) of the random close

cycles with
3-4 spheres in contg

. T

[ .
triangles with
2 spheres in contact |
1.|0 1.12 1.|4 ‘ 18_

birth rad|

packing with volume fraction = 63%.

the plots are 2D histograms where colour is log10 of the

number of (b,d) points in a small box
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Notice the second
transition at 67-68%

functional PCA of persistence
diagrams from 36 subsets shows
97% of variation in their PD2

is explained by a single dimension
VR, Turner (2016) Physica D.
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Ottawa sand Clashach sandstone Mt Gambier limestone

Want accurate geometric and topological characterisation from x-ray micro-CT images
« pore and grain size distributions, structure of immiscible fluid distributions
« adjacencies between elements, network models

Understand how these quantities correlate with physical properties such as
 diffusion, permeability, mechanical response.

images obtained at the ANU micro CT facility
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« Segment XCT image into grain (white) and pore (black) regions.
« Compute the signed Euclidean distance transform:

— SEDT(x) = - dist(x, B) if xisin W

— SEDT(x) = dist(x,W) if x is in B
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What is the filtration for persistence?

Imagine grey levels are heights in a landscape, study the lower level sets: f(x) < h.
The topology can only change when h passes through a critical value.

This observation goes back to JC Maxwell and was developed by Morse, Smale, and
others in the 20t Century into a powerful tool for the topological analysis of manifolds.

black is low
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M; is the set of index-/ critical points.

Gradient flow lines determine @ min: O-cell
adjacencies and the boundary O saddle: 1-cell
operator, d: M;to M, = max: 2-cell

This (abstract) chain complex has the
same homology as the simplicial
homology of the domain.

The filtration orders the critical points
by their grey-value

Persistent homology pairs an index-i
critical point that creates a cycle with
the index-(i+1) critical point that fills in
that cycle.

PDO (b,d) = (1.1,1.5)
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PDO births measure pore size as radius of max inscribed sphere.
PDO deaths give the pore-pore throat radius (1-saddles in dist func).
Number of PD1 pairs with b<0, d>0 is the genus of the pore space.

PD1 pairs with birth and death the same sign signal highly non-convex
pores or grains.

Symmetry in PD1 and PDO0O-PD2 duality signals a balance between
pore and grain phases

PD2 measures geometry of grains: death values are radii of
maximally inscribed spheres.

Appearance of the critical percolating sphere radius as an
Important length scale in PDs.
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Percolation and persistence
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