

Experimental investigations of the topology of spatially random systems

Asymptotic results for Betti numbers of Poisson points

Phys Rev E (2006)

Percolating length scales in persistence diagrams from porous materials

Water Resources Research (2015)

Vanessa Robins
Applied Mathematics
RSPE, ANU
Canberra, Australia

ARC Discovery Projects
DP0666442
DP1101028
ARC Future Fellowship
FT140100604

Part 1 Outline

- Betti numbers of spheres centered on point patterns, as a refinement of results for the Euler characteristic from Stochastic and Integral Geometry
 - eg texts by Stoyan, Kendall, Mecke. Schneider and Weil.
- Alpha shapes and the incremental Betti number algorithm
 - Delfinado and Edelsbrunner, 1993.
- The distribution of Poisson Delaunay Cell shapes
 - (Miles, 1974. Muche, 1996, 1998. Also the Okabe Boots Sugihara Chiu book)
- Asymptotic expressions for the Betti numbers of Poisson points in the low intensity limit
 - (Quintanilla and Torquato, 1996. VR 2006)

Tools for studying structure in point patterns

- Look at how something varies with distance
- something might be:
 - Number of points in shell of radius r (two pt correlation fn)
 - Minkowski functionals
 (volume, surface area, mean curvature, Euler characteristic)
 - Connected components (continuum percolation)
 - Betti numbers (higher-order topological measures)

In 3D: β_0 is number of components β_1 is number of independent, non-contractible loops β_2 is number of enclosed voids

Alpha complex

Alpha Shapes

Given a simplex, σ , in the Delaunay triangulation its alpha threshold, $\alpha_T(\sigma)$, is the radius of the smallest sphere that touches the vertices of σ and contains no other data points.

acute triangles

non-acute triangles

The alpha threshold of a lower dimensional face is not always the same as the circumradius of that face.

The alpha complex (or alpha shape) is the union of all σ from the Delaunay triangulation with $\alpha_T(\sigma) \le \alpha$.

Incremental algorithm for BNs

- Add simplices one at a time.
- A k-simplex σ is positive if it creates a k-cycle; negative if it destroys a (k-1)-cycle.
- $\beta_{k}(\alpha)$ = #{+ve k-simplices with $\alpha_{T} <= \alpha$ } #{-ve (k+1)-simplices with $\alpha_{T} <= \alpha$ }
- Algorithm due to Delfinado and Edelsbrunner (1993/5).
- Fast to compute in dimensions 2 and 3.

Homog. Poisson point patterns

Computational model:

- Constant intensity λ
- N points in unit square with uniform distribution in each coordinate
- For large λ , N is approximately Gaussian distributed.
- Attach balls of radius α to each point.
- Compute $\beta_k(\alpha)$ using periodic boundary conditions.
- $E\beta_k(\alpha)$ estimated as mean values of many independent realizations in unit d-cube.

2D Asymptotic results:

$$\beta_0$$
 / λ = 1-2 η +1.5641 η ²

$$\beta_1 / \lambda = 0.0640 \eta^2$$

 η is $\pi\alpha^2\lambda$

3D Asymptotic results:

$$\beta_0 / \lambda = 1-4\eta+5\eta^2-2.7431\eta^3$$

$$\beta_1 / \lambda = 0.5747 \eta^2$$

$$\beta_2 / \lambda = 0.015 \eta^3$$

η is
$$(4/3)\pi\alpha^3\lambda$$

grey lines mark the direct and void percolation thresholds

Conjecture of Klaus Mecke that the zeros of the Euler function bound the percolation thresholds. See Naher et al J Stat Mech 2008

Derivation of results

- Results for β_0 are due to Quintanilla and Torquato, 1996.
- For β_1 we use the following result due to Miles (1974)
- Size and shape of a Poisson Delaunay cell is completely characterised by the p.d.f.

$$h_m(r, \mathbf{u}_0, \dots, \mathbf{u}_m) = a(\lambda, m) \Delta_m r^{m^2 - 1} \exp(-\lambda \omega_m r^m).$$

Ergodicity of the Poisson-Delaunay complex implies

E #{ σ in R such that σ is A} = λ_k ||R|| Pr(A)

Empty triangles in 2D

 Simplest hole in 2D alpha shape is formed by edges of a single triangle

Property A is:

- •All edges $< 2\alpha$
- •Triang. circumradius > α
- Acute triangle

$$P_{\Delta} = \int_{\pi/3}^{\pi/2} \int_{\alpha}^{\alpha/\sin \phi} 2(\pi \lambda)^2 r^3 e^{-\pi \lambda r^2} f_{\text{max}}(\phi) dr d\phi.$$

$$\mathsf{E}\beta_1(\alpha) >= 2\lambda \, \mathsf{Pr}(\mathsf{A}) \sim 0.0640 \, \lambda \, \eta^2$$

Higher order terms

... Need joint distributions of two or more PDC triangles.

Or some clever tricks analogous to Torquato's expressions for the number of clusters containing k spheres

Empty triangles and tetrahedra

Similar argument as in 2D case.

Triangle conditions now apply to a typical face of a PDC

$$\mathsf{E}\beta_1(\alpha) \sim \lambda_2 \, \mathsf{Pr}(\mathsf{A}) \sim 0.5747 \, \lambda \, \eta^2$$

Face circumradii < a
Tetrahedron circumradius > a
Circumcenter interior to tetrahedron.

$$\mathsf{E}\beta_2(\alpha) \sim \lambda_3 \, \mathsf{Pr}(\mathsf{A}) \sim 0.015 \, \lambda \, \eta^3$$

Persistent homology

X_a maps inside X_b So there is a linear map

 $\pi: H_k(X_a) \longrightarrow H_k(X_b)$

define $H_k(a,b)$ to be $\pi(H_k(X_a)) \subset H_k(X_b)$

 $H_k(a,b)$ encodes cycles in X_a equivalent wrt boundaries in X_b

Persistent homology is defined for a growing sequence of cell complexes

Robins (1999) "Towards computing homology from finite approximations" Edelsbrunner, Letscher, Zomorodian (2000) "Topological persistence and simplification" Zomorodian, Carlsson (2005) "Computing persistent homology"

Persistent homology

- Input: A filtration: $K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_n$
- i.e. an ordering of the cells in the complex.

- cells are added sequentially (never removed).
- each k-cell either creates a k-cycle or destroys a (k-1)-cycle.
- a destroyer is paired with the youngest cycle that is homologous to its boundary.
- Output: (birth, death) pairs that define the parameter interval over which each k-cycle exists.

Persistence diagrams

Key result: Persistence diagrams are stable wrt to perturbations in the original data [Cohen-Steiner, Edelsbrunner, Harer (2007) "Stability of persistence diagrams"]

Disordered packing (random close pack, maximally jammed) Bernal limit has vol frac Φ = 64% Well-defined distribution of local volumes

Partially crystallized packing, Φ=70% a fully crystallized packing has Φ=74% Kepler's conjecture (1600s) has only been proven this century by Hales and Ferguson

Data analysis:

- 1. calculate bead centres and radii from the XCT image
- 2. build the Delaunay complex from the bead centres
- 3. construct the alpha-shape filtration
- 4. compute persistence diagrams
- 2-4 use CGAL and dionysus software packages.

A maximally dense packing is built from layers of hexagonally packed spheres Locally, these give pores related to regular tetrahedra and octahedra

Persistence diagrams for a subset (14mm³) of the partially crystallised packing with high volume fraction = 72%.

axis units normalised by bead radius = 0.5mm

Persistence diagrams for a subset (14mm³) of the random close packing with volume fraction = 63%.

the plots are 2D histograms where colour is log10 of the number of (b,d) points in a small box

axis units normalised by bead radius = 0.5mm

regular tet and oct pores

granular and porous materials

Ottawa sand

Clashach sandstone

Mt Gambier limestone

Want accurate geometric and topological characterisation from x-ray micro-CT images

- pore and grain size distributions, structure of immiscible fluid distributions
- adjacencies between elements, network models

Understand how these quantities correlate with physical properties such as

diffusion, permeability, mechanical response.

Topological image analysis

- Segment XCT image into grain (white) and pore (black) regions.
- Compute the signed Euclidean distance transform:
 - SEDT(x) = dist(x, B) if x is in W
 - SEDT(x) = dist(x,W) if x is in B

Topology from images

What is the filtration for persistence?

Imagine grey levels are heights in a landscape, study the lower level sets: $f(\mathbf{x}) \le h$. The topology can only change when h passes through a critical value.

This observation goes back to JC Maxwell and was developed by Morse, Smale, and others in the 20th Century into a powerful tool for the topological analysis of manifolds.

The Morse chain complex

 M_i is the set of index-*i* critical points.

Gradient flow lines determine adjacencies and the boundary operator, d: M_i to M_{i-1}

This (abstract) chain complex has the same homology as the simplicial homology of the domain.

The filtration orders the critical points by their grey-value

Persistent homology pairs an index-*i* critical point that creates a cycle with the index-(*i*+1) critical point that fills in that cycle.

PD0 (b,d) =
$$(1.1,1.5)$$

PD1 (b,d) = $(3.6, 4.5)$

Robins, Saadatfar, Delgado-Friedrichs, Sheppard (2016) Water Resources Research 52

Some observations...

PD0 births measure pore size as radius of max inscribed sphere.

PD0 deaths give the pore-pore throat radius (1-saddles in dist func).

Number of PD1 pairs with b<0, d>0 is the genus of the pore space.

PD1 pairs with birth and death the same sign signal highly non-convex pores or grains.

Symmetry in PD1 and PD0-PD2 duality signals a balance between pore and grain phases

PD2 measures geometry of grains: death values are radii of maximally inscribed spheres.

Appearance of the critical percolating sphere radius as an important length scale in PDs.

Percolation and persistence

Percolation and persistence

Percolation and persistence

